Multi-Phase Startup (version 2.3e)

2002, Apr.2

HIRANABE Kenji

Name

Multi-Phase Startup

Aliases

Bootstrap, Run Level, “One, Two, Three!” “Hop, Step, Jump!”
Problem

How do you startup a system with subsystems that are dependent on one another?

Context
You are working with a real-time system or operating system. The system is composed of a number of subsystems and the subsystems are dependent on one another. Because of the dependency, it is impossible to sequentially startup one subsystem after another.
Forces

· You want to startup a system that is composed of several subsystems.

· Each of the subsystems has several services.

· The subsystems are dependent on one another because one service of a subsystem uses services of other subsystems.

· You must ensure that all subsystems ultimately get started.
· If the startup procedure is not well organized, the system can deadlock due to circular dependency.
Solution

Introduce intermediate state(s) between each subsystem’s “inactive”(or initial) state and “active”(or ready) state. During the startup procedure, first, move the subsystems from the initial “inactive” state to an intermediate state, and then into the final "active" state. Introducing sublevels for bootstrapping can avoid the problem of circular dependency and deadlock.

As you introduce the intermediate levels, define the meaning of each level over the whole system to determine the bootstrapping procedure. To label the intermediate states, define an integer value, sometimes called a "run level," and use the integers to determine the startup order for the system. The system starts from the initial “inactive” state, to “run level 1,” then to “run level 2,” … and then to the final “active” state.

A typical strategy for labeling run levels is:

· Run level 1 – go as far as each subsystem can go alone without depending on others’ services.
· Run level 2 – go as far as each subsystem can go using others’ run level 1 services.

· Run level n – go as far as each subsystem can go using others’ run level n-1 services.

This process is sketched as follows (fig.1);

fig. 1 Startup Process

A typical structure and collaboration can be sketched as the following diagrams (fig.2-6). Note that these UML diagrams illustrate only one typical design example with objects but this pattern has little to do with Object-Oriented design.

Structure

[image: image1.png]SubSystem

System

+ enterRunlevelrunlevel - int)

[# doRunlevellrunievel

int)

ConcreteSubSystem

[# doRunlevelrunievel

int)

enterRunlevelint requestedievel |
Tunlevel = requestedievel
doRunlevel(runlevel);

fig. 2 Structure
Participants

· System
· Represents the whole system responsible for starting up its subsystems.

· Comprise subsystems.

· SubSystem

· An abstract class for concrete subsystems.

· Provides an entry point(enterRunlevel) for System.

· Provides an hot spot(doRunlevel) for ConcreteSubSystems.

· ConcreteSubSystem

· Represents concrete subsystems.

· Describes subsystem-specific behavior for each run level.

Collaborations

· The System object requests its SubSystem objects to enter a certain run level.

· Each SubSystem object enters the specified run level and takes action to get into the level.
[image: image2.png]3: doRunlevel(1)
5: doRunlevel(2)
: doRunlevel(3)

1:new
2 enterRunlevel(1)
4 enterRunlevel2)
6 enterRunievel() I

0

Systern

SubSuster

fig. 3 Collaborations

 As a variation of this pattern, a 3-phase variation is sometimes adopted. The levels can be expressed as the three degenerate cases: "new,” “init,” and “start."
[image: image3.png]SubSytem

By — T
start))

"+ enterinit0)
+ enterStart)|

b

ConcreteSubSystem

it
startd)

fig. 4 3-Phase Implementation
Another variation is a composite recursive hierarchy of the System and SubSystems for multi-layer architectures.
[image: image4.png]+subsystem

SubSystem

System

[+ enterRunleve lbunleve - int)
[# doRunleveltrunlevel : int)

L

CancreteSubSystem

doRunleveltunlevel : int)

enter Runlevellint requestedievel) |
runlevel = requestedievel
for Gll subsystems)
subsystem doRunleve lGunleve
doFunlevelfunievel)

fig. 5 Layered Implementation
There is also a more flexible variation in which the System object does not control the level of the system in a top-down basis but allows each Subsystem object to resolve the dependency, retain its context, and elevate its run level. In this variation, the System object repeatedly calls the SubSystems' start() method until all subsystems enter the final active state.
[image: image5.png]1: done =start0
3: [nhile not done]
done =start0

2 doStart0
4 doStart0

-

Sub

Suitem

[System doest Iy
manage
subsystems in
2 top-down
baste

Fepeat untl all
the SubSystems
eot ready.

System

Each Sub
System retain
ite context

betueen calk.

fig. 6 Non -top-down Implementation

This variation makes the subsystems more autonomous but more difficult to ensure that the system reaches the final active state. Each subsystem needs to observe the other subsystems and subsystem startup depends on the observed progress of the other subsystems. During startup, system deadlock can be produced by one subsystem waiting for another elevation and vice versa.

In the implementation of this pattern, you might have to consider error-recovering policy. If one subsystem is not able to enter the specified run level, the System needs to recognize it as an error, and to decide whether to stop moving into the next level or to retry after a while.

Resulting Context

· The system can startup the mutually dependent subsystems reliably.

· The structure and process of the startup procedure is well defined.
· You can safely startup the system and avoid deadlock.

· The startup procedure might get complicated and the arrangement of the startup order requires detailed knowledge of all the subsystems.
· The startup procedure is fixed at design-time. If flexibility is more important to the system, an autonomous variation of this pattern might be suitable, in which the actual order of startup is deferred until run-time.
· When a new subsystem or a service of a subsystem is added, you need to determine new startup run levels. You might need a “services vs. run levels mapping table.”
Examples

An operating system has one subsystem called "File System (FS)" and another called "Network Interface (NI)." It starts up FS first and reads a configuration file containing the IP address and other information for NI. Then it starts up NI to reach the final active system state. Recently this operating system added a new FS feature "Network File System (NFS)." This feature introduced a mutual-dependency problem between FS and NI:

1. NI depends on FS for its configuration.

2. FS depends on NI for the new NFS feature.
As this example shows, mutual dependency between subsystems prevents the system startup from behaving as a simple sequence (i.e. first FS, then NI). Therefore, the following solution is adopted.

3. FS first starts up only the local file system service. In this state, the system does not have any network services. Label this state as "run level 1."

4. NI then connects to the network based on the configuration file using the local file system service of FS. In this state, the system is started up with the local file system and the simple network. Label this state as "run level 2."

5. Finally, FS builds the NFS service using the NI network service. In this state, the system is started up with the full feature. Label this state as "run level 3," which is the final active state of the system.
The strategy here is to divide the subsystems' state into intermediate levels and to use these intermediate levels to resolve the problem of the mutual dependency. The Multi-Phase Startup pattern provides a solution to the mutual dependency problem that often occurs in system's bootstrapping.

Rationale

Each subsystem’s services are mutually dependent. To find a bootstrap path, you have to divide the subsystems' services into ordered phases or levels and arrange the subsystems, so you can gradually start the whole system by starting the subsystems in order.

Consider an n-space where one variable represents one subsystem's state. In this state space, the transition path from the initial state to the final active state can be considered a movement of a point in the space. Non-top-down autonomous implementation cannot avoid the point's passing deadlock areas in this space.

Top-down management defines “'check points” labeled with each run level within this state space. Introducing checkpoints can deliberately avoid the deadlock areas. This approach is equivalent to that of "introducing a butler to the dining philosophers" to avoid deadlock.

Whether to adopt the top-down approach or the autonomous approach means consideration of, for example, the complexity of the system, requirements for error recovery, real-time constraints, flexibility of the system.
[image: image6.png]Sotive Stap

Pe—
e
et
irea
e | f—

st

fig. 7 System's State Space and Deadlock Areas
Known Uses

· Run levels and bootstrap scripts of UNIX systems.
UNIX systems have “run levels”(init states) and startup scripts called “rc script.” For example SolarisTM defines 8 states and startup scripts for each state and places startup scripts in /etc/rc?.d where ‘?’ is one of the run levels. The meanings of the run levels are as follows.

· 0 … Power off.

· s … Single user mode. File systems are mounted.

· 1 … System administration mode. File systems are mounted and users can login.

· 2 … Multi-user mode. All daemons are started except the NFS server.

· 3 … Multi-user mode. NFS resource is also shared.

· …
· A Complicated real-time system I experienced.
I used to work with a subway passengers guidance system working in Nagoya, Japan. In that project, we divided systems into six subsystems and each subsystem defined numbered entry points for startup.

(-- I could write a “war story” about this! We wore hard-hats and observed 20 stations 5:00am(the first train) every morning and debugged after the last train… The system was written in C++ and run on VxWorks.)

Related Patterns

· Singleton [Gamma+95] is often used for the implementation of the System class.

· Composite [Gamma+95] is used for the multi-layer variation of this pattern.
· Separating Initialization from Instantiation [Cope92] also discusses an “after you/after you” circular dependency.
· “SICO First and Always” in Fault-Tolerant Telecommunication System Patterns [Hanmer+95] describes the importance and difficulties of the system's ability to (re) initialize the system to keep its integrity and sanity. SICO (System Integrity Control Program) can be viewed as the System class in this pattern.

· Craig Larman [Larman98] states in 19.8.1 of Applying UML and Patterns: an introduction to object-oriented analysis and design, that collaboration diagrams for a startUp use case should be deferred till all the other collaborations are analyzed well. This means that the initialization phase division depends on the analysis of subsystems' services.

· Apart from startup procedures, Federation [Fujino99] discusses negotiation among subsystems that are derived from totally different concepts.

Acknowledgements

I'd like to thank JPLoP members for a lot of advice in the course of refinement of this pattern, especially for an autonomous variation that is from HIRASAWA Akira and for the insight into the problem of the autonomous variation and the essential heuristicness behind this pattern that is from FUJINO 'Terry' Terunobu.

Ms. Linda Rising gave me tremendous help and advice during the shepherding of this pattern for the MensorePLoP2001. She helped me refine this pattern in such a clear form and compelling words. Also I’d like to thank Si-Sa team of MensorePLoP2001 for pointing out good things and suggestions on this pattern, I love you all.
References

· [Gamma+95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns, Addison Wesley Publishing Company

· [Cope92] James O. Coplien, Advanced C++, Addison Wesley Publishing Company

· [Hanmer+95] Michael Adams, James Coplien, Robert Gamoke, Robert Hanmer, Fred Keeve, Keith Nicodemus, AT&T Bell Laboratories, “SICO First and Always” in Fault-Tolerant Telecommunication System, http://www.rcnchicago.com/~jcoplien/Patterns/PLoP95_telecom.html
· [Larman98] Craig Larman, Applying UML and Patterns: an introduction to object-oriented analysis and design, Pearson Education
· [Fujino99] FUJINO Terunobu, Federation Pattern,
http://www.kame-net.com/jplop/PatternRepository/PatternBody/Federation01/FedPat_v09.pdf
Author

HIRANABE Kenji

Intermediate level

Active level

Inactive level

dependency

resolution

Subsystem B

Subsystem A

